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ABSTRACT: R&D activities by one industry often have positive effects on the 
productivity performance of other industries, as a consequence of technology spillovers. 
Econometric problems (such as multicollinearity), however, have prevented researchers 
from identifying the industries that have been responsible for the most important 
technology spillovers. This paper proposes an alternative estimation approach 
(Generalized Maximum Entropy econometrics), which can cope with datasets 
characterized by a high degree of multicollinearity. For a number of industries, rates of 
return to R&D expenditures by other industries are estimated on a bilateral basis. 
Furthermore, productivity effects of spillovers from the foreign counterparts of the 
industry are estimated. The analysis is done for eighteen industries in twelve OECD 
countries in the period 1976-1999.   
 
Key words: labor productivity growt, R&D, technology spillovers, maximum entropy 
estimation. 
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1. INTRODUCTION 
 
Knowledge has some characteristics of a public good. It is partly nonrival and partly non-
excludable, which implies that it can give rise to externalities. In mainstream theory, 
externalities often call for public policy. If the externalities are mainly positive, 
governments should take care of additional supply of the public good. Since most theories 
stress the positive externalities of knowledge, its purposeful production (by means of R&D 
activities) should be stimulated. Since the extent and nature of R&D activity varies 
considerably across industries, policy effectiveness would be helped considerably if the 
industries that generate the most important externalities (or, ‘spillovers’) could be singled 
out. Despite the by now vast empirical literature on this topic, one cannot but observe that 
this identification objective has still not been attained. This paper proposes a less traditional 
approach, to come closer to the production of a matrix that indicates the productivity 
effects industries experience as a consequence of R&D activities done in each of the 
remaining industries. Productivity effects of foreign counterparts will also be estimated. 

Due to econometric problems (i.e. multicollinearity), empirical research into 
productivity effects has so far relied on composite spillover variables. Constructing such 
variables involves the definition of a weighting scheme, to approximate the relevance of 
industry-specific contributions to the industry under consideration. Including relevance 
weights is important, since it is implausible to assume that the electronics industry will 
enjoy similar benefits from a euro spent on R&D in the computer industry to those from a 
euro spent on R&D in the furniture industry. Several weighting schemes have been 
proposed, however, based on different channels of technology flows. Studies like Los and 
Verspagen (2000) compared results for a couple of such composite variables to find out 
which type of spillovers would have the most prominent effects, but did not find very 
strong results. Keller (1997, 1998) went much further, by arguing that the theoretically 
underpinned composite variables do not perform any better than composite variables 
based on randomly chosen weights. Although Keller’s results were not left uncriticized, a 
very inconvenient situation emerged: almost all studies (see Nadiri, 1993, and Mohnen, 
1996, for early surveys) agree that technology spillovers have substantial positive effects on 
productivity, but it is impossible to assess which industries are best at “radiating” 
productive spillovers and whether the most important spillovers are of the rent spillover or 
the knowledge spillover kinds. 

This paper attempts to shed new light on the discussion, by adopting a non-classical 
regression approach, which does not suffer from the problems that caused researchers 
using classical regression analysis to use composite spillover variables. Generalized 
Maximum Entropy (GME) econometrics can deal with multicollinearity in data (see the 
excellent introduction by Golan et al., 1996). We applied our GME analysis on data for 12 
developed countries, for the period 1976-1999. The data on industry-level value added 
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growth and labor inputs were taken from the very recent EUKLEMS (2007) database. 
OECD’s STAN-ANBERD dataset was used as the source for the industry-level R&D data. 
Our analysis cannot tell which spillover channels have had the strongest impact, but it gives 
indications about the main suppliers of technology spillovers for each of the 18 
manufacturing industries for which we run the analysis. 

The paper is organized as follows. Section 2 reviews the general setup of studies into 
the productivity effects of technology spillovers and discusses the current state of affairs. 
In Section 3, we give an introduction in the intuition behind GME estimation and present 
the equations we will estimate using GME techniques. Section 4 is devoted to a brief 
discussion of the data, after which the estimation results are presented in Section 5. Section 
6 concludes.             
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2. A BRIEF NON-CHRONOLOGICAL HISTORY OF 
SPILLOVER EFFECTS ESTIMATION 

 
Since the early 1960s, many studies have tried to estimate the empirical importance of 
technology spillovers for productivity growth. Generally, these productivity studies start 
from a production function, most often an extended Cobb-Douglas specification. Not only 
the traditional production factors physical capital and labor are included, but also two kinds 
of R&D stocks: R&D investments by the unit (firm, industry, region or country) itself and 
R&D obtained through spillovers from other units (so-called indirect R&D). If we denote 
the former by R and the latter by IR, the production function looks like 
 

( )jt jt jt jt jtQ A IR K L Rη α β γ=        (1) 
 

Q stands for value added, A is a constant, K indicates the stock of physical capital, L 
denotes employment, t is the time index and j is the unit index. The elasticities η, α, β and 
γ can be estimated, if sufficient observations on each of the variables are available. 
Alternatively, β can be measured as the labor share in total income (this approach is 
commonly known as ‘growth accounting’). If constant returns to scale with respect to 
capital and labor are imposed, α equals 1-β. In this way, a measure for total factor 
productivity (TFP) growth is obtained, and this can be related to the changes in both R&D 
stocks.1 Both approaches yield estimates for output elasticities with respect to indirect 
R&D, (dQ/dIR)⋅(IR/Q), or rates of return to indirect R&D, dQ/dIR. These are considered 
to be measures for the impact of spillovers. As explained by Van Meijl (1995), estimating a 
common rate of return is often less data-demanding than estimating a common elasticity. 
Under the (admittedly strong) assumption that R&D stocks are not subject to depreciation, 
rates of return can be estimated by linking total factor productivity growth to R&D 
intensities, defined as RE/Q and IRE/Q (E indicates expenditures).2  

In principle, the simplest way to estimate the influence of R&D efforts in other 
industries is the one applied by Bernstein and Nadiri (1988). They specify one indirect 
R&D variable for each of the (other) industries. For example, the decrease in unit costs in 
the U.S. chemical industry is related to the R&D expenditures of the industries that 
manufacture non-electrical machinery, electrical products, transportation equipment and 
scientific instruments. This approach lets the data speak for themselves to see which 
(other) industries influence the productivity of a particular industry. The method has one 
important drawback: most industry R&D budgets have risen during the last decades and 
are relatively high for the same set of countries, which causes huge multicollinearity 
                                                           
1   A third approach is to use the dual of the production function, i.e., the cost function. Changes in the costs 

per unit of output are regressed on changes in the prices and quantities of various inputs (see Bernstein 
and Nadiri, 1988). 

2  This procedure is sometimes referred to as the ‘Terleckyj transformation’, after Terleckyj (1974). 
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problems. The method we propose below could be seen as a way of following up to the 
lead by Bernstein and Nadiri (1988), using an alternative regression technique. 

Since classical regression analysis is not suitable to solve the problems encountered by 
Bernstein and Nadiri, many authors have proceeded along an alternative avenue of 
research. They continued in the way proposed much earlier already by Terleckyj (1974), 
using weights to construct aggregate indirect R&D investment variables (IRE): 
 

∑ω=
i

iijj REIRE   ∀i≠j      (2) 

 

In this expression, i and j denote the ‘spillover producing’ and ‘spillover receiving’ units, 
respectively. The weights ωij are the crucial elements distinguishing the different 
approaches to measuring spillovers. They indicate to what extent the R&D undertaken by i 
may be considered to be part of the indirect R&D expenditures of j. A number of 
weighting schemes have been proposed. We will describe them briefly (see Los and 
Verspagen, 2007, for much more detailed discussions).3 
 
Unit Weights 
In his firm level study emphasizing the effects of intraindustry spillovers, Bernstein (1989) 
circumvents the weighting problem by setting all weights equal to one. So did Los and 
Verspagen (2000) in their attempt to evaluate the empirical performance of four different 
interindustry spillover measures. The most important disadvantage of this method is that 
no account is taken of the theory of spillovers, which argues that due to differences in 
technological opportunities, appropriability of knowledge, differences in trade intensities 
among industries etc., the weights should in fact be very heterogeneous. 
 
Weights Based on Transaction Input or Output Shares 
Early attempts to include spillovers in productivity analysis at the industry level (Terleckyj, 
1974) used trade statistics to construct industry weights ωij. Input-output tables are 
converted into tables of output coefficients. Such coefficients indicate the share of industry 
i’s output delivered to industry j. Next, R&D weights are set equal to the output 
coefficients, except for the diagonal elements. Terleckyj also calculated similar output 
coefficients from capital flow matrices to account for interindustry investment flows. In 
this output shares approach, ‘second-round’ effects might also be important. This occurs 
when spillovers are transmitted to industries down the production chain, for example, 
when advances in semi-conductors spill over to the computer industry, and from there to 
the banking industry (see, e.g. Sakurai et al., 1997).  
                                                           
3  See Griliches (1979, 1992) for classic contributions on channels through which innovations in one 

industry can affect the (sometimes misperceived) productivity performance of other industries. Van 
Pottelsberghe (1997) expresses views that are not in every sense in line with Los and Verspagen’s (2000, 
2007) opinions. 
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Input-output tables are also used to compute spillover measures in which the ωijs are 
defined as the input coefficients aij. Wolff (1997), among others, used this measure in an 
interindustry context. In their highly influential international spillover study, Coe and 
Helpman (1995) construct a similar measure (using import weights). A disadvantage of 
these approaches is that only trade-related knowledge flows are taken into account. It is 
well-known that several other channels provide opportunities for technology spillovers. 
 
Weights Based on Patent and Innovation Output Shares 
Scherer (1982) pioneered another approach, because he felt that economic transactions 
often do not entail exchange of technology. A procedure based on true technological data 
should be used. First, he assigned a sample of patents granted in a certain period to an 
industry-of-origin, i.e., the producer of the technology described in the patent. Next, all 
patents were assigned to one or more industries-of-use, on the basis of information in the 
patent document.4 Finally, output shares were computed in a way directly comparable to 
the way output coefficients are constructed for traditional input-output tables based on 
economic transactions.  

Numbers of innovations could be used as an alternative for patent counts. Sterlacchini 
(1989) used a large innovation survey undertaken by Robson et al. (1988). In this survey, 
innovations were assigned to an industry-of-origin (or industry-of-manufacture) and an 
industry-of-use. Next, he used this ‘innovations input-output table’ to calculate innovation 
share weights ωij, denoting the share of innovations of industry i used by industry j. 
DeBresson et al. (1994) followed this lead. A disadvantage of both approaches is that the 
focus is on innovations traded between industries, usually embodied in product 
innovations. Knowledge flows not related to economic transactions are not considered. In 
this sense, the main disadvantage of input-output based weights is not addressed by these 
methods. 

 
Weights Based on Patent Information Output Shares 
Verspagen (1997a) derived different spillover measures from patent office documents. 
Using a concordance that maps patent classification codes onto manufacturing industry 
classes, Verspagen derived the industry most likely to have produced the knowledge 
described in the patent document, and the industries that have been most likely to benefit 
from this knowledge (not the patented product itself).5 This yielded a ‘patent information 

                                                           
4  Johnson and Evenson (1997) proposed a concordance that maps patent classification codes assigned by 

the Canadian Patent Office onto industry codes, which enabled them to construct their matrix without 
the need to examine every patent document individually. 

5  Whereas a patent originating from the aircraft industry might have the airlines industry as its main 
beneficiary in terms of the use of the patented product, the main user of the knowledge documented in the 
patent might be the motor vehicles industry.  
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input-output table’ similar in format to the ones described above. The ωijs were then, set 
equal to the output coefficients of this table. 

Verspagen constructed a second type of patent information input-output tables using 
patent citations. The patent citation output share weights method has the disadvantage that 
it relates to a very specific channel of spillovers and implicitly assumes that each cited 
patent is equally relevant to the spillover receiver.  
 
Weights Based on Technological Proximity 
The first spillover measure explicitly focusing on non-traded knowledge spillovers was 
constructed by Jaffe (1986). He argued that knowledge generated by R&D investments 
flows into a ‘spillover pool’, which is accessible to all firms. Some firms or industries 
benefit more from firm i’s contribution to the pool than others, because not all knowledge 
is relevant to their R&D. To measure the part of the contribution of the ith firm that is 
relevant to firm j, Jaffe (1986) used a ‘technological proximity’ measure: 
 

⎟
⎠

⎞
⎜
⎝

⎛
⋅

⋅
=ω

∑∑

∑

==

=
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k
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F
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ff

ff

1

2

1

2

1  ,       (3) 

 Equation (3) gives the cosine of two vectors consisting of the shares of the F patent 
classes in the ‘patent portfolio’ of a firm. Goto and Suzuki (1989) chose a similar spillover 
measure in their productivity study at the industry level, but used Japanese information on 
the shares of product classes to which the R&D of an industry is devoted, instead of patent 
classes.6  

A disadvantage of these methods is that symmetry is imposed, while it is very 
awkward to suppose that if industry i would generate knowledge useful for industry j, 
industry i will automatically benefit to the same extent from knowledge generated in j. 

The discussion above shows that a number of approaches have been adopted to weight 
R&D expenditures to arrive at composite indirect R&D or spillover variables. The main 
result of most studies is that technology spillovers do have a substantive impact on 
productivity growth, irrespective of the weighting scheme applied. As a matter of fact, 
Keller (1997) claimed that most sets of randomly generated weights yielded virtually identical 
rates of return and goodness of fit statistics. Later on, in a critique of the influential article 
by Coe and Helpman (1995), he also claimed to find such a result for the effects of 
international R&D spillovers (Keller, 1998). This result got a lot of attention. Although 
Keller’s claims had to be modified somewhat because of the peculiar way in which he had 
                                                           
6  Comparable approaches can be found in Adams (1990), who used the shares of various categories of 

scientists in the research work force of an industry as determinants of its position ‘in technological space’, 
and in Los (2000), who proposed to compute weights analogously on the basis of columns of input-
output tables. 
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constructed his random weights, the bottomline was a negative one: Unit weights as 
discussed above did not yield better or worse results than sets of weights constructed along 
ways grounded in theory. This more or less led to a standstill with regard to this kind of 
research. Case study research into sources of technology for specific industries and 
countries largely replaced systematic comparisons. 

In our view, not much more can be gained from the composite spillover variable 
approach. We feel, however, that new developments in non-classical econometrics make it 
possible to deal with data characterized by strong violations of the requirements for 
sensible application of classical least squares approaches. Hence, we propose to return to 
the original Bernstein and Nadiri (1988) approach of specifying an equation with several 
industry-specific R&D variables in the right hand side of the equation. These equations will 
be riddled with multicollinearity problems. Since Generalized Maximum Entropy methods 
are capable of dealing with problems like these, we aim at estimating rates of return to 
R&D expenditures by individual industries, including by the industry considered. 
Furthermore, we will estimate the productivity effects of R&D expenditures by competing 
industries abroad.        
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3. THE MAXIMUM ENTROPY APPROACH 
 
In this section, the basics of (Generalized) Maximum Entropy (ME) econometrics will be 
introduced. We will limit our discussion to methods used to obtain estimates for the type 
of linear regression models we use to assess the productivity effects of technology 
spillovers. More extensive introductions can be found in Kapur and Kesavan (1993) and 
Golan et al. (1996). 

The essential property of the ME principle is that it chooses the ‘most uncertain’, ‘most 
uniform’ or ‘least information-requiring’ distribution for the estimate of a parameter that 
agrees with the data observed. This is fundamentally different from a more classical least 
squares approach, in which several assumptions on the distribution of the error term must 
be taken for granted. The main idea is that a random variable (such as an estimator) z can 
take on K values (z1, …, zK), with unknown probabilities p = (p1, …, pK). Following the 
formulation proposed by Shannon (1948), the entropy of this distribution p  is: 

 

∑
=

−=
K

k
kk ppH

1

ln)(p  (4)

 
The entropy function H measures the ‘uncertainty’ of the outcomes of the event. This 
function reaches its maximum when p has a uniform distribution: pk = 1/K for all k. On 
the other extreme, this function takes a value of zero (no uncertainty) when the probability 
of one of the outcomes goes to one. If some information about the variable (for example, 
observations on the dependent and independent variables) is available, it can be used as 
constraints in a linear programming model aimed at maximizing (4). Each piece of 
information will lead to a Bayesian update of p. In the linear regression framework, the 
estimator of a coefficient is found by computing the expected value of z, given p. It is 
important to note that even for a situation with only one observation, the ME approach 
yields an estimate of the probabilities, since this observation will generally lead to a 
difference between the a priori uniformly distributed p and the posterior p. Hence, in 
situations in which the number of observations is not large enough to apply classical 
econometrics, this approach can be used to obtain robust estimates of unknown 
parameters. Standard errors (required to judge the statistical significance of the point 
estimates) can be obtained as well, provided that the number of observations exceeds the 
number of parameters estimated.7  In Appendix A (and the references therein), information 
can be found about the statistical properties of the GME estimators used in this paper. 

                                                           
7  More precisely, if the observations on the independent variables are contained in the matrix X, X’X 

should be of rank R or higher, if R is the number of unknown parameters. 
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The problem at hand is the estimation of a linear model where a variable y depends on 
R explanatory variables xl: 

 
eXβy +=  (5)

 
in which y is the ( )1×N  vector of observations for y, X is the ( )N R×  matrix of 
observations for the R explanatory variables, β  is the ( )1R×  vector of unknown 
parameters ( )1,..., Rβ β ′=β  to be estimated, and e is the ( )1×N  vector with random 
disturbances. As mentioned, each rβ  is assumed to be a discrete random variable in the 
GME approach. A priori beliefs about their 2K ≥  possible realizations are included in the 
estimation procedure by means of supporting vectors ( )1 2, , , 'r r r rKb b b=b K  with 
corresponding probabilities ( )1,..., 'r r rKp p=p , for r = 1, …, R. The vectors br are based 
on the researcher’s a priori beliefs about the likely values of the parameters. Now, vector β  
can be written as: 
  

'
1 1
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2 2
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R RR

β
β
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⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1

2

pb 0 . 0
p0 b . 0

β Bp
... .... . . .

p0 0 . b

 (6)

 
Then, given the vectors pr the initial estimate for each parameter is given by 
 

,...,R  rpb
K

k
rkkrrr 1 ;

1

==′= ∑
=

pbβ  (7)

 

For the random term, a similar approach is followed. To express the lack of information 
about the actual values contained in e, we assume a distribution for each ie , with a set of 

2Q ≥  values ( )1,..., 'i i iQv v=v  with respective probabilities ( )1 2, ,..., 'i i i iQw w w w= .8 

Hence, we can write: 
 

                                                           
8 The distribution for the errors is usually assumed symmetric and centered around 0. Therefore 

1i iQv v= − . A usual procedure for giving values to this vector is following the so-called 3-sigma rule, 
which amounts to fixing the extreme bounds as ±3 times the standard deviation of variable y. In our 
empirical analysis, we will assume identical a priori support vectors for each of the random disturbances. 
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and the value of the random term for an observation i equals 
 

'

1

; 1,...,
Q

i i i iq iq
q

e v w i N
=

= = =∑v w  (9)

 
Consequently, model (5) can be transformed into: 
 

= +y XBp Vw  (10)

 
Now, the estimation problem for the unknown vector of parameters β  is reduced to the 
estimation of NR +  probability distributions of the support vectors, and the following 
constrained entropy maximization problem can be solved to obtain these estimates: 
 

, 1 1 1 1

Max ( , ) ln ln
QR K N

rk rk iq iq
r k i q
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= = = =
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The restrictions in (11b) ensure that the posterior probability distributions of the estimates 
and the errors are compatible with the observations. The restrictions in (11c) and (11d) are 
just normalization constraints. The estimated value of rβ  will be (cf. equation (7), but the 
vectors p now reflect a posteriori distributions): 
 

,...,R  rpb
K

k
rkkr 1 ;

1

== ∑
=

β  (12) 
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For GME regressions, a pseudo-R2 can be computed based on the concept of normalized 
entropy (see Golan et al., 2001). More specifically, the following formula has been applied: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−=

)(max
)(

1R- 2

pH
pH

pseudo  (13)

 
This expression compares the value of the entropy function obtained in the ME program 
with the maximum value Shannon’s entropy could take, given the number of probabilities 
to estimate. A value equal to zero means that the entropy is maximum, which would mean 
that the information (the data sample) included as constraints in the ME program are not 
informative at all. The closer the value of this pseudo-R2 to one, the more information the 
sample contains. Multiple types of pseudo-R2s can be reported, the differences depending 
on the inclusion or exclusion of entropy related to the error term. In the results 
documented below, we report pseudo-R2s related to the coefficients to be estimated only, 
following Golan et al. (1999). 
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4. DATA ISSUES 
 
We use the methodology introduced above to estimate equations resembling production 
function (1), for 18 industries. The industry classification is given in Appendix B. Our 
choice for this specific aggregation level is mainly driven by data availability in the 
EUKLEMS (2007) database, which is the most extensive set of data currently available. 
Despite the opportunities offered by this database, we are faced with some data 
restrictions. In order not to loose too much industry detail, we cannot include growth of 
capital intensities as a source of productivity growth. Although it does not fit standard 
mainstream production theory, one might argue that a lot of investment is induced by the 
emergence of improved or new capital goods. This would imply that parts of the returns to 
R&D carried out in capital goods industries are ‘misallocated’ to the investing industry if 
capital intensity is included as a separate determinant. 

Further, since the number of countries for which the required data are available is 
relatively small, we decided to consider three subperiods, 1976-1983, 1984-1991 and 1992-
1999. This leaves us with 36 observations per industry, since data for Denmark, Finland, 
France, Germany, Ireland, Italy, Japan, The Netherlands, Spain, Sweden, the UK and the 
US have been available. For each of the three time periods we added a dummy, which 
yields the set of regression equations 
 

18

2 2 3 3
1
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ij

idt
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⎛ ⎞
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∑
∑   i = 1, , 18; t = 1, 2, 3    (14) 

 
The abovementioned subperiods are indicated by t. The left hand side of the equation 
represents the annual average labor productivity growth for industry i in country c, as taken 
from the EUKLEMS (2007) database, variable LP_I (gross value added per hour worked, 
volume index).9  

The second term of the right hand side of (14) contains eighteen R&D intensities and 
the corresponding rates of return (the D

ijβ  coefficients). These refer to R&D expenditures 
by domestic industries, including the industry under consideration (i) itself. The third term 
captures important parts of the effect of foreign spillovers. In order to remain able to 
derive standard errors, the limited number of observations led us to the decision not to 
estimate effects of international interindustry spillovers, but to focus on the effects of 
international intraindustry spillovers (as opposed to, for example, Verspagen, 1997b). 
Neither did we include separate effects of R&D spillovers from individual countries, which 

                                                           
9  See Timmer et al. (2007) for an overview of the data and a description of construction procedures. 
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would have been in the spirit of, among others, Coe and Helpman (1995). The effects of 
international intraindustry spillovers are captured by the rate of return F

iβ . 
All R&D expenditures were taken from OECD’s STAN-ANBERD database. In order 

to arrive at an industry-level classification compatible with the EUKLEMS productivity 
data some updating procedures comparable to EUKLEMS procedures had to be adopted, 
for instance in linking ISIC2 and ISIC3 industries to EUKLEMS industries.10 The value 
added figures were taken from EUKLEMS (2007), variable VA. Both the R&D 
expenditures and the value added indicators are expressed in national currency and in 
current prices. To arrive at average observations for the subperiods, the annual R&D 
expenditures for the eight year-periods were added and so were the value added figures, 
after which the ratios of the sums were computed.11  

The two dummy variables are included to take differences in technological 
opportunities and other period-specific differences into account. The reference period is 
the early period, 1976-1983. By adopting this specification, we assume that the rates of 
return to R&D remained equal over time. We acknowledge the restrictive nature of this 
approach, although mainstream economists would argue that profit-maximizing firms with 
rational expectations would lower their R&D expenditures in periods in which returns to a 
given level of R&D investments decline.   

Alternatively, we could have opted for a specification in which we would have looked 
at just one, 24 year-period. To obtain a reasonable number of degrees of freedom, we 
should have assumed that industries within a few categories would have had identical rates 
of return to R&D. This approach was followed by Verspagen (1997a), who assigned 
industries to the categories “high-tech”, “medium-tech” and “low-tech”. We feel such an 
approach is more restrictive than ours, since it would imply that returns would be equal 
even though R&D activities in different industries are characterized by different degrees of 
uncertainty (and, therefore, risk). 

We estimated equation (14) for 18 manufacturing industries. The industry classification 
can be found in the Appendix B. 
 
 

                                                           
10  The R&D dataset is available from the authors on request. 
11  We could also have opted for a fully dynamic specification. This would have required the determination 

of a lag structure, which we consider an issue beyond the scope of this paper. 
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5. RESULTS 
 
In order to estimate equation (14), we specified a maximum entropy problem shaped like 
equations (11). We took a common support vector with 3 elements (0, 0.5, 1) for all D

ijβ  

parameters, for all industries i. This implies that we assume that the range of feasible rates 
of return for own R&D efforts in industry i is a priori the same as the rate of return to R&D 
expenditures in other industry j. With this support vector we are impose our belief that 
only nonnegative rates of return of R&D are feasible in the medium- to long-run and 
averaged over firms in a country. We cannot think of a reason why R&D activity in one 
sector could affect the medium-run labor productivity performance in an industry 
negatively. Additionally, we set an upper bound to the rates of return of 100%. In view of 
the high rates of return to knowledge spillovers (118-147%) as reported by Scherer (1982), 
this might seem restrictive. If so, this would be indicated by the estimation results, because 
the additional information produced by the observations would push the estimates close to 
the 100%-bound set by the support vector.   

A common support has been chosen too for the intercept αi and the time dummies γi2 
and γi3. For these parameters, we took (-5, 0, 5) as the common support. The support 
vector for the rates of return to foreign intraindustry spillovers F

iβ  was uniformly set as (-
1, 0, 1). Finally, for specifying the vector vi of feasible values for the error term, a three-
point vector centered around 0 has been taken in each regression, following the 3-sigma 
rule of variable y. This is common practice in most empirical studies that apply the ME 
approach (following Pukelsheim, 1994). 

We first attempted to estimate (14) by means of traditional least squares techniques. 
We do not present the full set of results for reasons of space, but discussion of a few 
results suffices to conclude that the estimation problem at hand is not suitable to be tackled 
by OLS. Hardly any rate of return to own R&D is significant (3 out of 18, at 10%) and 
estimated rates of return to R&D done in other industries range from -2357% to +3857%. 
Many of these huge (in an absolute sense) estimates are not significant, however. Foreign 
intraindustry spillovers have significant effects in just 3 industries. The R2s range from 0.42 
to 0.78. Thus, the results suggest that R&D intensities are able to explain a substantial part 
of labor productivity growth rates indeed, but no reasonable interpretation can be given to 
estimates for single coefficients.     

Tables 1 reports the results for the estimations of equation (14) obtained by GME 
along the lines set out above. The estimates for the rates of return of the own R&D 
intensity in each industry are emphasized. The final columns shows the pseudo-R2 values.  

The own R&D efforts are pointed out as a relevant variable for explaining variations in 
labor productivity for most industries. Except for industries 2 (“textiles, leather and 
footwear)”, 3 (“wood”), 10 (“metal products”) and 13 (“electrical machinery”), the 
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estimates of the return of rate of the own R&D intensity are higher than zero. 
Furthermore, in almost all industries the own R&D intensity appears to be the highest rate 
of return estimated. In other words, although our neutral prior inserted into the GME 
program suggests that the R&D in one industry was expected to produce the same rate of 
return (50%, since 0.5 is the central value in the support vector) as R&D investments in 
any other industry, the additional information contained in the observations yields 
estimates that differ from our prior and are in line with intuition. One might expect that 
purposefully conducted R&D will have higher rates of return than R&D done by other 
industries, with different objectives in mind.  We find only two cases in which the upper 
bound of our support vectors (reflecting a rate of return of 100%) might have been 
restrictive. The estimated rates of return in “fuels” (5) and “radio, TV and communication 
equipment” (14) amount to 94% and 86%, respectively. Sensitivity analysis with respect to 
the support vectors might yield evidence that the actual rates of return in these industries 
could have exceeded 100%. This is an issue will study more systematically below. For many 
other industries, the estimated returns are in plausible ranges. 

Next, let us turn to the results for the effects of R&D spillovers from other industries. 
In many cases, the information contained in the observations drive the estimated rates of 
return down to a value close to 0. Apparently, the industries considered did no get relevant 
technology transmitted from the R&D-performing industry, or it did not manage to use it 
in a productivity-enhancing way.  Two industries stand out in apparently generating hardly 
any positive productivity effects for other industries. These are “chemicals”(6) and “radio, 
TV and communication equipment” (14). 

Six industries generated technology spillovers that raised labor productivity in at least 
ten industries. These were: “pulp, paper and printing” (4), “fuels” (5), “rubber and 
plastics”(7), “office machinery” (12), “instruments” (15) and “other manufacturing” (18). 
With the exception of (7) and (12), these industries might not be the ones one would have 
in mind as being very important in shaping manufacturing-wide productivity growth. It 
should be borne in mind, however, that rates of return do not say much about the 
contributions of these industries to productivity growth. The correct interpretation of the 
reported estimates is: if industry i would have spent the same amount of money on R&D 
activities as industry j (and with the same success rate), it would have enjoyed a rate of 
return on this investment equal to the value reported. In view of the fact that the amounts 
of R&D spent in an industry like “other manufacturing” (18) are rather small in 
comparison to other industries, the contribution to productivity growth on other industries 
is probably relatively modest. 

It is also interesting to see which industries gained much from R&D activities in other 
industries. In this respect, we find considerable differences. Industries that appear not to 
have experienced a lot of positive spillovers (at least not originating from a diversity of 
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industries) are “textiles and leather” (2), “wood” (3), “metal products” (10, “electrical 
machinery” (13) and “motor vehicles” (16). At the other end of the spectrum, we also 
identify industries that received productive spillovers from virtually all industries. Examples 
are “chemicals” (6), “machinery” (11) and “radio, TV and communication equipment” (14). 
It is important, however, to note that in particular for the last two industries, the value of 
the pseudo-R2s is low. This implies that the positive estimates are mainly due to the 
uniform prior we used, which amounted to a rate of return of 50%. As can easily be 
checked, many of the estimated rates of return are close to this value indeed.     
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Table 1. GME estimations of rates of return to R&D and R&D spillovers 

 iα  
D
i1β  D

i 2β  D
i 3β  D

i 4β  D
i 5β  D

i 6β  D
i 7β  D

i 8β  D
i 9β  D

i10β  D
i11β  D

i12β  D
i13β  D

i14β  D
i15β  D

i16β  D
i17β  D

i18β  F
iβ  2iγ  3iγ  Pseudo 

-R2 
s1 0.03** 0.38** 0.49** 0.47** 0.16** 0.34** 0.01 0.40** 0.45** 0.27** 0.20** 0.01 0.12** 0.06** 0.00 0.14** 0.00 0.00 0.55** 0.41** -0.05** -0.05** 0.32 
s2 0.02** 0.01 0.40 0.35 0.00 0.31** 0.00 0.09 0.17 0.00 0.01 0.00 0.07** 0.00 0.00 0.01 0.00 0.00 0.33** 0.10** -0.02** -0.03** 0.57 
s3 0.01** 0.01 0.19 0.30 0.38** 0.06 0.00 0.08 0.04 0.01 0.12 0.00 0.00 0.00 0.00 0.05** 0.00 0.02 0.09 0.18** -0.03** -0.04** 0.58 
s4 0.01** 0.35** 0.37** 0.42** 0.28** 0.18** 0.00 0.04** 0.09** 0.01** 0.17** 0.00 0.00 0.00 0.00 0.00** 0.00 0.00** 0.18** 1.00** -0.02** 0.07** 0.43 
s5 -0.12** 0.01 0.15** 0.30** 0.09** 0.94** 0.00 0.05** 0.11** 0.34** 0.00 0.00 0.00 0.00 0.00 0.09** 0.00 0.22** 0.01 0.00** 0.00** 0.31** 0.61 
s6 0.08** 0.22** 0.43** 0.44** 0.15** 0.32** 0.01** 0.37** 0.34** 0.18** 0.21** 0.01** 0.12** 0.02** 0.00** 0.09** 0.04** 0.01** 0.42** 0.01** -0.06** -0.04** 0.30 
s7 -0.04** 0.09** 0.46** 0.41** 0.03** 0.37** 0.00 0.49** 0.40** 0.15** 0.16** 0.00 0.00** 0.01 0.00 0.31** 0.00** 0.11** 0.38** 0.04** -0.02** 0.02** 0.41 
s8 0.02** 0.04 0.38** 0.39** 0.01 0.07** 0.00 0.12** 0.23** 0.04 0.07** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19** 0.13** -0.02** -0.02** 0.53 

s9 -0.01 0.17 0.45 0.48 0.39** 0.53** 0.01 0.52* 0.43 0.52* 0.40 0.12* 0.10** 0.15** 0.00 0.46** 0.25** 0.15** 0.31 -
0.02** -0.14** -0.21** 0.22 

s10 -0.03** 0.26 0.42 0.47 0.31** 0.35 0.02 0.28 0.34 0.24 0.38 0.06 0.07** 0.16** 0.00 0.02 0.05 0.02 0.46* 0.13** 0.00** -0.02** 0.33 
s11 -0.01** 0.31** 0.49** 0.49** 0.40** 0.38** 0.04** 0.57** 0.50** 0.47** 0.44** 0.24** 0.10* 0.10** 0.02** 0.60** 0.21** 0.04** 0.46** 0.03** -0.05** -0.07** 0.20 

s12 0.29** 0.27** 0.47 0.48 0.16** 0.52** 0.00 0.32** 0.41** 0.23** 0.33** 0.00 0.69** 0.22** 0.00 0.06** 0.00 0.17** 0.44** -
0.73** 0.06** 2.77** 0.37 

s13 -0.09** 0.17 0.51 0.50 0.29 0.33 0.00 0.46 0.55 0.44 0.37 0.05 0.23** 0.07 0.00 0.11 0.06 0.04 0.49 0.01 0.04** -0.01 0.30 
s14 -0.34** 0.47** 0.46** 0.50** 0.65** 0.47** 0.12** 0.43** 0.45** 0.50** 0.44** 0.27** 0.30** 0.17** 0.86** 0.49** 0.12** 0.15** 0.46** 0.00** -0.12** 0.63** 0.18 
s15 -0.06** 0.17 0.41 0.37 0.07 0.24 0.00 0.21 0.22 0.08 0.26 0.00 0.02 0.00 0.00 0.24** 0.03 0.37** 0.41** 0.05** -0.05** -0.04** 0.39 
s16 -0.02** 0.04 0.32 0.31 0.01 0.19 0.00 0.14 0.16 0.13 0.14 0.00 0.05** 0.00 0.00 0.00 0.25** 0.00 0.11 0.00 -0.02** 0.00 0.50 
s17 -0.04** 0.04** 0.37** 0.46** 0.10** 0.70** 0.00 0.16** 0.24** 0.10** 0.19** 0.00 0.05** 0.00* 0.00 0.00 0.01** 0.06** 0.16** 0.04** 0.03** 0.00** 0.45 
s18 -0.01** 0.02 0.30 0.25 0.08* 0.03 0.00 0.39** 0.22 0.03 0.02 0.00 0.00 0.00 0.00 0.05** 0.00 0.00 0.34** 0.05** 0.01** 0.00 0.55 

* Estimates significantly different from 0 at 10%; ** Estimates significantly different from 0 at 5%; 
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all iα , 2iγ and 3iγ : (-5, 0, 5); Support vectors for all D

ijβ : (0, 0.5, 1); Support vectors for all F
iβ : (-1, 0, 1). 

 

 

 

 



Most of the estimated rates of return to foreign intraindustry spillovers are positive, such as 
in “food” (1), and to a lesser extent, “wood” (3), “non-metallic mineral products” (8) and 
“metal products” (10). As was mentioned already, we specified the support vector for the 
associated coefficient as (-1, 0, 1). We did so to consider that foreign R&D can lead to 
positive productivity effects through knowledge externalities, but also to business stealing 
effects. Such business stealing effects appear to dominate in the “computers” industry (12). 
One might speculate that the successful R&D projects in the US and Japan have largely 
eradicated high-productivity activities from many of the other countries in the sample, such 
as France and Italy. 

For “pulp, paper, and printing” (4) we find a rate of return to foreign intraindustry 
spillovers equal to the upper boundary of the prior distribution. This is another case that 
asks for sensitivity analysis. Results for a different set of support vectors are documented in 
Appendix C. As can be concluded from the pseudo-R2s, the wider support vectors and the 
higher expected rates of returns to domestic interindustry spillovers implied by the prior 
uniform distributions yield lower explanatory power. Nevertheless, most results do not 
change in a qualitative sense. The estimated rates of return are generally a bit higher, which 
should not come as a surprise: the expected value of the prior distributions is higher than 
in the baseline case reported in Table 1, after which exactly the same information (in the 
form of observations) is fed to the entropy maximizing program.         

Some of the results we find are in line with intuition, others were less expected. 
Particularly, the result that our estimation framework singles out own R&D as yielding 
significant returns (while we treated these intensities symmetrically with indirect R&D 
intensities reflecting spillovers) makes us think that interesting and insightful results can be 
attained by further exploring GME estimation of technology spillover effects. Testing 
several specifications of the regression equation should prove a useful avenue for future 
research.  
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6. CONCLUSIONS 
 
In this paper, we introduced a novel approach to the assessment of the impact of 
interindustry technology spillovers on labor productivity. Unlike the vast majority of 
empirical studies undertaken so far, we do not use classical least-squares estimation 
techniques, but rely on Generalized Maximum Entropy techniques. This toolbox of 
econometric methods is particularly geared towards situations in which data are ill-behaved. 
In studies linking productivity growth to sources of spillovers, multicollinearity is often a 
big problem, as a consequence of which it is impossible to estimate the effects of R&D 
done in individual industries. This paper is the first one to approach these problems using 
GME techniques. 

GME estimation yields much more plausible results than ordinary least squares 
estimation. Our results show that with just a few exceptions, industries attain highly 
positive rates of return to their R&D investments. Moreover, some industries benefit from 
innovation in many other industries, whereas others mainly rely on own R&D activities. 
Generally, industries benefit from technology generated in similar firms abroad. In the 
computer industry, however, very successful R&D in a few countries appear to have had 
very negative effects in other countries. This business stealing effect dominated strongly. 

The analysis in this paper can be extended in various ways. First, we do not employ the 
full potential of our dataset in terms of dynamic analyses. It should be possible to replicate 
studies like Los and Verspagen (2000), especially because GME can deal with non-
stationary series of observations without having to incorporate cointegration formulations 
and the like. A second extension would not relate to the application, but more to a 
potential improvement in terms of the methodology. In this paper, our prior has been that 
all industries benefit to an identical extent from technology spillovers. Although the 
previous literature experienced difficulties in assessing the exact origins of productivity-
enhancing spillovers, it made clear that industries differ in the extent to which spillovers 
play a role. Such information could be used to work with industry-specific priors, which 
might further improve the accuracy of the estimates. Finally, our paper does not shed light 
on the importance of the channels through which the most important technology spillovers 
flow. In our view, it should be possible to estimate a single productivity parameter for an 
indirect R&D variable for which the weights are estimated simultaneously. In a next step, 
these weights could be compared to the weights found by researchers who constructed 
their weights based on a specific idea of how technological spillovers emerge.      

 
 

 
 



 20

REFERENCES 
 
Adams, J.D. (1990), “Fundamental Stocks of Knowledge and Productivity Growth”, Journal of 

Political Economy, vol. 98, pp. 673-702. 
Bernstein, J.I. (1989), “The Structure of Canadian Inter-Industry R&D Spillovers, and the Rates of 

Return to R&D”, Journal of Industrial Economics, vol. 37, pp. 315-328. 
Bernstein, J.I. and M.I. Nadiri (1988), “Interindustry R&D Spillovers, Rates of Return, and 

Production in High-Tech Industries”, American Economic Review (Papers and Proceedings), vol. 78, 
pp. 429-434. 

Coe, D.T. and E. Helpman (1995), “International R&D Spillovers”, European Economic Review, vol. 
39, pp. 859-887. 

DeBresson, C., G. Sirilli, X. Hu and F. Kwan Luk (1994), “Structure and Location of Innovative 
Activity in the Italian Economy, 1981-85”, Economic Systems Research, vol. 6, pp. 135-158. 

EUKLEMS (2007),  EUKLEMS Database, March 2007, http://www.euklems.com. 
Fraser, I. (2000), “An Application of Maximum Entropy Estimation: The Demand for Meat in the 

United Kingdom”, Applied Economics, vol. 32, pp. 45-59. 
Golan, A., G. Judge and D. Miller (1996), Maximum Entropy Econometrics: Robust Estimation with 

Limited Data (Chichester UK, John Wiley). 
Golan, A., E. Moretti and J.M. Perloff (1999), “An Information-Based Sample-Selection Estimation 

Model of Agricultural Workers’ Choice between Piece-Rate and Hourly Work”, American Journal 
of Agricultural Economics, vol. 81, pp. 735-741. 

Golan, A., J.M. Perloff and E.Z. Shen (2001), “Estimating a Demand System with Nonnegativity 
Constraints: Mexican Meat Demand”, Review of Economics and Statistics, vol. 83, pp. 541-550. 

Goto, A. and K. Suzuki (1989), “R&D Capital, Rate of Return on R&D Investment and Spillover 
of R&D in Japanese Manufacturing Industries”, Review of Economics and Statistics, vol. 71, pp. 555-
564. 

Griliches, Z. (1979), “Issues in Assessing the Contribution of Research and Development to 
Productivity Growth”, The Bell Journal of Economics, vol. 10, pp. 92-116. 

Griliches, Z. (1992), “The Search for R&D Spillovers”, Scandinavian Journal of Economics, vol. 94, pp. 
S29-S47. 

Jaffe, A.B. (1986), “Technological Opportunity and Spillovers of R&D: Evidence from Firms' 
Patents, Profits, and Market Value”, American Economic Review, vol. 76, pp. 984-1001. 

Johnson, D. and R.E. Evenson (1997), “Innovation and Invention in Canada”, Economic Systems 
Research, vol. 9, pp. 177-192. 

Kapur, J.N. and H.K. Kesavan (1993), Entropy Optimization Principles with Applications (New York: 
Academic Press). 

Keller, W. (1997), “Technology Flows between Industries: Identification and Productivity Effects”, 
Economic Systems Research, vol. 9, pp. 213-220. 

Keller, W. (1998), “Are International R&D Spillovers Trade-Related? Analyzing Spillovers among 
Randomly Matched Trade Partners”, European Economic Review, vol. 42, pp. 1469-1481. 

Los, B. (2000), “The Empirical Performance of a New Interindustry Technology Spillover 
Measure”, in: B. Nooteboom and P. Saviotti (eds.), Technology and Knowledge: From the Firm to 
Innovation Systems, Edward Elgar, Cheltenham UK, pp. 118-151. 

Los, B. and B. Verspagen (2000), “R&D Spillovers and Productivity: Evidence from U.S. 
Manufacturing Microdata”, Empirical Economics, vol. 25, pp. 127-148. 



 21

Los, B. and B. Verspagen (2007), “Technology Spillovers and Their Impact on Productivity”, in: H. 
Hanusch and A. Pyka (eds.), Elgar Companion to Neo-Schumpeterian Economics, Edward Elgar, 
Cheltenham UK, pp. 574-593. 

Mittelhammer R.C. and N.S. Cardell (1997), “On the Consistency and Asymptotic Normality of 
Data-constrained GME Estimators in the General Linear Model”, mimeo, University of 
Washington. 

Mohnen, P. (1996), “R&D Externalities and Productivity Growth”, STI Review, vol. 18, pp. 39-66. 
Nadiri, M.I. (1993), “Innovations and Technological Spillovers”, NBER Working Paper 4423, 

Cambridge MA. 
Pukelsheim, F. (1994), “The 3 Sigma Rule”, The American Statistician, vol. 48, pp. 88-91. 
Robson, M., J. Townsend and K. Pavitt (1988), “Sectoral Patterns of Production and Use of 

Innovations in the UK: 1945-83”, Research Policy, vol. 17, pp. 1-14. 
Sakurai, N., G. Papaconstantinou and E. Ioannidis (1997), “Impact of R&D and Technology 

Diffusion on Productivity Growth: Empirical Evidence for 10 OECD Countries”, Economic 
Systems Research, vol. 9, pp. 81-109. 

Scherer, F.M. (1982), “Inter-Industry Technology Flows and Productivity Measurement”, Review of 
Economics and Statistics, vol. 64, pp. 627-634. 

Shannon, J. (1948), “A Mathematical Theory of Communication”, Bell System Technical Bulletin 
Journal, vol. 27, pp. 379-423. 

Sterlacchini, A. (1989), “R&D, Innovations, and Total Factor Productivity Growth in British 
Manufacturing”, Applied Economics, vol. 21, pp. 1549-1562. 

Terleckyj, N.E. (1974), Effects of R&D on the Productivity Growth of Industries: An Exploratory Study, 
National Planning Association, Washington DC. 

Timmer, M.P., M. O'Mahony and B. van Ark (2007), “The EU KLEMS Growth and Productivity 
Accounts: An Overview”, University of Groningen & University of Birmingham. 

Van Meijl, H. (1995), Endogenous Technological Change: The Case of Information Technology, Ph.D. Thesis, 
University of Limburg, Maastricht. 

Van Pottelsberghe de la Potterie, B. (1997), “Issues in Assessing the Effect of Interindustry 
Spillovers”, Economic Systems Research, vol. 9, pp. 331-356. 

Verspagen, B. (1997a), “Measuring Inter-Sectoral Technology Spillovers: Estimates from the 
European and US Patent Office Databases”, Economic Systems Research, vol. 9, pp. 47-65. 

Verspagen, B. (1997b), “Estimating International Technology Spillovers Using technology Flow 
Matrices”, Weltwirtschaftliches Archiv, vol. 133, pp. 226-248. 

Wolff, E.N. (1997), “Spillovers, Linkages, and Technical Change”, Economic Systems Research, vol. 9, 
pp. 9-23. 

 
 



 22

Appendix A: Statistical properties of the GME estimator 
 

The large sample properties of the ME estimators are analyzed in Golan et al. (1996, chapter 6). ME 

estimators are shown to be consistent and asymptotically normal. Golan et al. also analyze small 

sample properties, using Monte Carlo simulation. They numerically compare the GME estimators 

to traditional least squares and maximum likelihood estimators. Their results show a good 

performance in terms of the accuracy of the estimates. 

In order to do inference in the GME approach, the procedure suggested by Mittelhammer and 

Cardell (1997), Fraser (2000) and Golan et al. (2001) can be followed. Under assumptions on the 
behavior of model eXβy +=  that guarantee the consistency and asymptotical normality of the 

estimator, the distribution of the estimates follows ( ) ⎥
⎦
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, and iê  is the estimate of the error for each observation i 

defined by ∑
=

=
Q

q
iqqi ŵvê
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Appendix B: Industry Classification 

 
1.  Food, beverages and tobacco 10. Fabricated metal products 

2. Textiles, textile, leather and footwear 11. Machinery, n.e.c. 

3. Wood and products of wood and cork 12. Office, accounting and computing machinery 

4. Pulp, paper, paper products, printing and 
publishing 

13. Electrical machinery and apparatus, n.e.c. 

5. Coke, refined petroleum and nuclear fuel 14. Radio, television and communication 
equipment 

6. Chemicals and chemical products 15. Medical, precision and optical instruments 

7. Rubber and plastics 16. Motor vehicles, trailers and semi-trailers 

8. Other non-metallic mineral products 17. Other transport equipment 

9. Basic metals 18. Manufacturing, n.e.c. 
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 Appendix C: Sensitivity Analysis 

 

Table C1. Sensitivity of the GME estimates 

 iα  
D
i1β  D

i 2β  D
i 3β  D

i 4β  D
i 5β  D

i 6β D
i 7β  D

i 8β  D
i 9β  D

i10β  D
i11β  D

i12β  D
i13β  D

i14β  D
i15β  D

i16β  D
i17β  D

i18β  F
iβ  2iγ  3iγ  Pseudo 

-R2 
s1 0.03** 0.48** 0.72** 0.67** 0.14** 0.42** 0.01 0.52** 0.62** 0.29** 0.20** 0.00 0.10** 0.04** 0.00 0.11** 0.00 0.00 0.84** 0.44** -0.04** -0.05** 0.38 
s2 0.02** 0.01 0.55 0.48 0.00 0.36** 0.00 0.08 0.18 0.00 0.01 0.00 0.06** 0.00 0.00 0.00 0.00 0.00 0.38** 0.10** -0.02** -0.03** 0.61 
s3 0.01** 0.00 0.21 0.38 0.45** 0.06 0.00 0.09 0.03 0.00 0.12 0.00 0.00 0.00 0.00 0.05** 0.00 0.01 0.09 0.19** -0.03** -0.04** 0.63 
s4 -0.01** 0.46** 0.58** 0.69** 0.55** 0.42** 0.00 0.13** 0.26** 0.06** 0.35 0.00 0.00** 0.00** 0.00 0.01** 0.00 0.01** 0.36** 1.44** -0.04** 0.07** 0.44 

s5 -0.16** 0.01 0.25** 0.46** 0.08** 1.36** 0.00 0.10** 0.19** 0.43** 0.01 0.00 0.00 0.00 0.00 0.07** 0.00 0.29** 0.02* -
0.03** -0.02** 0.25** 0.61 

s6 0.07** 0.28** 0.63** 0.64** 0.17** 0.45** 0.00 0.51** 0.46** 0.23** 0.29** 0.00 0.13** 0.02* 0.00 0.09** 0.04** 0.01 0.58** 0.01** -0.06** -0.04** 0.37 
s7 -0.05** 0.06** 0.63** 0.55** 0.01** 0.44 0.00 0.67** 0.47** 0.11** 0.15** 0.00 0.00 0.00** 0.00 0.32** 0.00 0.10** 0.45** 0.04** -0.02** 0.02** 0.47 
s8 0.02** 0.02 0.51** 0.51** 0.01 0.05 0.00 0.10 0.25* 0.03 0.05 0.00 0.00 0.00 0.00 0.00** 0.00 0.00 0.17** 0.12** -0.02** -0.02** 0.59 

s9 -0.02** 0.13 0.62 0.70 0.50** 0.79** 0.00 0.74 0.56 0.74 0.53 0.08 0.06 0.11 0.00 0.44** 0.24** 0.11 0.36 -
0.02** -0.12** -0.20** 0.29 

s10 -0.03** 0.26 0.56 0.68 0.35** 0.44* 0.01 0.30 0.40 0.24 0.49* 0.03 0.05 0.14** 0.00 0.01 0.04 0.01 0.62** 0.12** 0.00 -0.01** 0.40 
s11 -0.02** 0.35** 0.72** 0.72* 0.53** 0.51** 0.02 0.83** 0.71** 0.64** 0.61** 0.23** 0.08** 0.09** 0.01 0.66** 0.19** 0.03* 0.67** 0.03** -0.04** -0.06** 0.26 

s12 0.12** 0.31** 0.68** 0.71** 0.19** 0.77** 0.00 0.41** 0.57** 0.26** 0.44** 0.00 1.05** 0.22** 0.00 0.05** 0.00 0.15** 0.62** -
0.76** 0.12** 2.76** 0.39 

s13 -0.10** 0.14 0.75 0.74 0.32 0.42 0.00 0.62 0.79 0.52 0.46 0.02 0.22** 0.04 0.00 0.07 0.04 0.03 0.67 0.01 0.04** 0.00 0.37 

s14 -0.41** 0.69** 0.63** 0.73** 1.14** 0.68** 0.03 0.52** 0.58** 0.74** 0.54** 0.14** 0.24** 0.07** 1.45** 0.66** 0.02** 0.05** 0.63** -
0.01** -0.14** 0.56** 0.20 

s15 -0.06** 0.15 0.56 0.48 0.04 0.25 0.00 0.22 0.22 0.06 0.28 0.00 0.01 0.00 0.00 0.23** 0.02 0.37** 0.51** 0.05** -0.05** -0.04** 0.47 
s16 -0.01** 0.03 0.38 0.37 0.00 0.19 0.00 0.12 0.14 0.12 0.12 0.00 0.04** 0.00 0.00 0.00 0.24** 0.00 0.10 0.00 -0.02** 0.01 0.57 
s17 -0.04** 0.02 0.49** 0.64** 0.08** 0.92** 0.00 0.16** 0.28** 0.08** 0.21** 0.00 0.03** 0.00 0.00 0.00 0.01* 0.04** 0.20** 0.05** 0.02** 0.00** 0.51 
s18 -0.01** 0.01 0.35 0.27 0.07 0.02 0.00 0.49** 0.21 0.02 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.39** 0.05** 0.01** -0.01** 0.60 
* Estimates significantly different from 0 at 10%; ** Estimates significantly different from 0 at 5%; 
Shaded cells on the main diagonal refer to productivity effects of “own” R&D; 
The support vectors were fixed as (0, 0.75, 1.5) for the interindustry spillovers, in (-1.5,0,1.5) for the aggregated R&D in the same industry abroad and in (-7.5,0,7.5) for the 
intercept and the time dummies. 
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